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SUMMARY

A numerical model is developed for the simulation of moving interfaces in viscous incompressible flows.
The model is based on the finite element method with a pseudo-concentration technique to track the
front. Since a Eulerian approach is chosen, the interface is advected by the flow through a fixed mesh.
Therefore, material discontinuity across the interface cannot be described accurately. To remedy this
problem, the model has been supplemented with a local mesh adaptation technique. This latter consists
in updating the mesh at each time step to the interface position, such that element boundaries lie along
the front. It has been implemented for unstructured triangular finite element meshes. The outcome of this
technique is that it allows an accurate treatment of material discontinuity across the interface and, if
necessary, a modelling of interface phenomena such as surface tension by using specific boundary
elements. For illustration, two examples are computed and presented in this paper: the broken dam
problem and the Rayleigh–Taylor instability. Good agreement has been obtained in the comparison of
the numerical results with theory or available experimental data. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of the problem of moving interfaces is one of the most important areas in
technological and engineering fields. Its application domain comprises solid mechanics (mate-
rial shaping processes) and fluid mechanics (break-up of a jet, coalescence of liquid drops,
wave breaking, etc.). However, from a numerical modelling viewpoint, different approaches
have been developed to treat these two classes of problems. For material shaping problems, the
finite element method combined with a Lagrangian description of the movement is generally
used. On the other hand, the most suitable kinematic description for the study of fluid–struc-
ture interactions is a mixed one, Lagrangian in solids and Eulerian in fluids, with a coupling
at the interface. Finally, the mixed description or the Eulerian one is usually employed for the
treatment of flows with fluid–fluid interfaces. This last approach appears to be the one that
can handle complex interface problems. State of the art numerical methods can be found in
Hyman [1], Laskey et al. [2] and Floryan and Rasmussen [3].

In the present study, we are concerned with the last category of problems, in which
particularly complex shaped interfaces can be found. The difficulties in the treatment of such
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flows can be attributed to (i) the interface location (ii) the interface topology and (iii) the
interfacial mechanisms. Most of the developed models use the Eulerian description of the flow
and various techniques have been employed to track the interfaces through the fixed mesh.

The two well-known basic methods are surface tracking and volume tracking methods.
In surface tracking methods, markers are initially located on the interface and are subse-

quently followed within the flow. However, interfacial mechanisms such as coalescence cannot
be easily treated with these techniques. Moreover, Osher and Sethian [4] quoted another
drawback of the marker-based method, when the curvature effect has to be considered. For
large and complex motion, particles come together in regions of high curvature causing
numerical instability. A regridding mechanism must then be employed, but it usually contains
a diffusion-like error, which dominates the real effects of curvature. To overcome these
difficulties Osher and Sethian developed a class of algorithms (PSC schemes [4]) based on
numerically solving Hamilton–Jacobi equations.

In the volume tracking methods, the interface is implicitly tracked. Markers are used to
identify the fluids. These markers can be, e.g. one of the fluid properties, or another function.
For each cell of the mesh, the fluid which is present is found. The interface is located
somewhere inside cells that contain more than one fluid and it is built cell by cell. The two
commonly used methods are the MAC [5,6] (marker-and-cell) and VOF [7] (volume of fluid)
methods. The MAC technique uses massless particles as markers. The main problem with this
method is that the particles may accumulate in some zones of the mesh, leading to an
inaccuracy in locating the interface. The VOF technique defines a marker function F which
represents the fraction of a cell volume occupied by one of the fluids. For a given cell, if F is
zero or unity, the cell is considered to be either empty, or filled with the fluid respectively. If
F is between zero and unity, the cell is an interface cell. The VOF technique was developed by
Hirt and Nichols for finite difference structured meshes. The determination of the F value for
a cell uses the donor–acceptor flux approximation of Ramshaw and Trapp [8] which requires
rectangular cells. The advantage of these volume tracking methods is that they can handle
interfaces subject to large deformations and treat multiple fronts.

The extension of the volume tracking approach based on a marker function to finite element
unstructured meshes was initially introduced by Thompson [9]. For this purpose, he introduced
a marker function, named pseudo-concentration, designed to be advected by a standard finite
element computation. The main feature of this function is that it is continuous on the whole
domain and therefore can be accurately represented by finite element interpolation. Further-
more, this function must remain single-valued during the whole computation, and a specified
value is assigned to the interface. The latter is then identified by finding the contour lines
corresponding to this specified value. Initially, Thompson [9] applied his method to creeping
flows. Later Dhatt et al. [10] and then Usmani et al. [11] and Lewis et al. [12] extended the
method to Navier–Stokes flows with special interest in mould casting. In the last 2 years
extensions of the VOF method to unstructured meshes have also been proposed. Such
extensions can be found in Wang and Wang [13] and in FIDAP [14] (since version 7.5). In the
former the fluid flow is computed with the control volume finite element method of Baliga and
Patankar [15], whereas in the second case, the standard finite element method is used.
Nevertheless, both track the front with a VOF based method.

The main drawback of a Eulerian description for moving interface flows is that the material
discontinuity across the interface is poorly described because the front crosses elements. To
remedy this problem, methods based on a local and temporary mesh adaptation to the
interface position have been developed by authors such as Glimm et al.[16], Sato and
Richardson [17] and Mashayek and Ashgriz [18]. In the work of Glimm et al. [16], the interface
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is modelled by nodes which are connected by linear pieces called bonds and is tracked in a
Lagrangian manner. Mashayek and Ashgriz [18] used the VOF method combined with an
element generation technique along the interface. The front tracking strategy employed by
Sato and Richardson [17] is a combination of both, the front being advected in a Lagrangian
way and smoothed according to the volume fraction criteria. However, all the proposed mesh
adaptation strategies are based on structured meshes. Mesh cells at the beginning of the
computation have a rectangular shape. The wet cells (neither full nor empty) are adapted so
that one of their boundaries coincides with the interface after adaptation. Triangular elements
are usually used for this purpose, although Mashayek and Ashgriz [18] employed degenerated
quadrilateral elements.

The finite element model developed in this study uses the idea of pseudo-concentration
function to track the interface. It has been presented in previous works and applied to the
simulation of mould casting problem [19,20]. It has also been used to study the corium discharge
from a molten core of a nuclear reactor [21]. In the present work, it is supplemented by a mesh
adaptation algorithm for general triangular finite element meshes. Therefore, the new numerical
model is able to accurately describe material discontinuity across the interface and can also take
into account interfacial phenomena such as surface tension, radiation, etc. Also, to deal with
the pressure discontinuity at the interface, a triangular finite element based on discontinuous
pressure approximation has been chosen to compute the flow field. As in our previous works
[19–21], this element is employed here with a penalty formulation of the governing flow
equations using primitive variables. In Section 2, the moving interface model is presented. The
governing equations for a two-fluid system are shown in Section 3 and the finite element model
is described in Section 4. The efficiency of the present approach is illustrated by two numerical
examples in Section 5. Concluding remarks are made in Section 6.

2. MOVING INTERFACE MODEL

2.1. Volume tracking model

As previously mentioned in the introduction, the model developed in this study is a volume
tracking type in the context of finite element approach. The notion of pseudo-concentration
function is used to describe the motion of the interface. This function F is advected by the
velocity field V through the fixed finite element mesh according to the following hyperbolic
equation:

(F
(t

+V ·9F=0. (1)

This relation is a pure advection equation of first order. Boundary values for F may then be
specified only along the part of the boundary where the fluid enters the domain. An initial
linear F-field must also be defined according to the initial interface position. This field is built
in such a way that:

F=Fc at the interface; (2)

FBFc in zones filled with fluid 1; (3)

F\Fc in zones filled with fluid 2; (4)

where Fc is the F-value associated with the interface.
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Instead of defining a typical piece-wise marker function, e.g. density, the pseudo-concentra-
tion function F is chosen here as being continuous and monotonic. This choice comes from the
fact that the finite element method, which is employed to solve Equation (1), cannot handle the
advection of discontinuous function. Moreover the numerical scheme used to advect the
function F must keep the property of monotonicity. Otherwise numerical artificial interfaces
may appear during the computation. An analysis of this problem in the case of a Euler time
marching scheme can be found in Medale and Jaeger [20].

At each time step, once the velocity field has been computed, the solution of Equation (1)
yields the new F-field. The new interface position is then identified at the points where F takes
the prescribed value Fc. From this update front position, the elements of the mesh can then be
divided into three groups as follows:

– elements filled with fluid 1 (FBFc);
– elements filled with fluid 2 (F\Fc);
– elements crossed by the interface, called transition elements.

2.2. Local mesh adaptation technique

In the finite element method, fluid properties such as density, viscosity, etc. are specified on
each node and interpolated throughout the mesh or assigned to each element. Material
discontinuity can be only be accurately taken into account in the last case and only if the front
lies along element boundaries. In the case of a Eulerian approach, this front moves through a
fixed mesh. Physical properties assigned to transition elements are then fixed to an average
value calculated from those of fluids present in the element. Therefore, the discontinuity is not
really taken into account because it is smeared over a finite region of the order of elements
size. The coarser the mesh is, the more the errors are significant.

An additional difficulty arises with a two-fluid system of high density ratio. This is shown
in Figure 1, which corresponds to the case of a stable stratification of the two-fluid system
when the lightest fluid lies over the heaviest one. In Figure 1(a), the horizontal interface crosses
two neighbouring triangular elements. Since these two elements have inverted orientation (the
base is down on the left, whereas on the right it is up), they have two different filling rates and
thus different averaged density. Under gravitational action this leads to the generation of
artificial surface waves which must be dumped down. This was obtained in our previous work
[20] using an augmented viscosity for the crossed elements. However, this further raises the
degree of empiricism of the model. The same analysis can be driven in the situation depicted
in Figure 1(b), where the horizontal interface crosses an inclined structured mesh made up with
rectangular elements.

Figure 1. Particular configurations where the average properties based on the filling rate yield numerical instability.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 719–736 (1998)



LOCAL MESH ADAPTATION TECHNIQUE 723

The second drawback is that interfacial phenomena such as surface tension action or heat
transfer by radiation can only be modelled by body forces distributed in transition elements
(see Unverdi and Tryggvason [22], Brackbill et al. [23]). Again, the error is proportional to the
element size. Nevertheless, the results obtained by this approach are satisfying, providing the
treatment of the interface does not have to be very accurate. Several examples can be found
in References [10–12,19,20].

When dealing with problems where an accurate interface description is required, two
solutions exist. The first one consists of using very fine meshes so that error does not exceed
an acceptable value. This approach has been employed by other authors for a direct simulation
of very complex interfacial mechanisms, such as surface breaking [24]. However such a strategy
needs a high performance computer.

The other alternative, which we have adopted, is an update of the mesh at each time step.
For this purpose, a local mesh adaptation technique has been developed. In our Eulerian
model, the interface tracking is always performed on the same mesh, called reference mesh.
This is composed of linear three-node triangular elements and can be completely unstructured.
The local mesh adaptation technique consists of dividing the transition elements so that the
generated element boundaries lie along the front. By doing so, the reference mesh is locally
adapted to the front position and a temporary mesh is built from the reference one. This
temporary mesh is used for solving flow equations or any other governing equation of a given
physical problem (e.g. energy equation, to study heat transfer mechanism). It allows us to take
into account the fluid physical properties discontinuity across the interface since transition
elements do not exist any more. Another advantage of the developed technique is that
interfacial phenomena can be treated accurately by using specific boundary elements at the
interface.

Since the finite element used for solving the interface tracking problem is a linear one, the
cutting out of the transition elements is obvious. In fact, since the F function is piece-wise
linear on the reference mesh, the Fc-contour line that identifies the interface is a line segment
inside each transition element. Therefore, these elements are divided into two parts which have
triangular and trapezoid shapes. By adding a new node at each of the intersection points of the
front line with the edges of the element, this latter can be divided into three triangular elements
as shown in Figure 2(a).

In this cutting out procedure, caution must be taken not to generate elements which are too
small. This situation is encountered each time the front line intersects an element edge very
close to one of its vertex nodes. To overcome this difficulty, a cutting out criterion has been
introduced. For each element edge crossed by the interface, the distance D between the
intersection point and the nearest vertex node is compared with the length L of the edge. A
new node is generated at the intersection point only if the following condition is satisfied:

D]oL (5)

where o is a real number: 0BoB1.
In Figure 2(b), Equation (5) is checked for only one of the intersected edges. Therefore, only

one new node is generated and the corresponding transition element is transformed into two
elements. As for Figure 2(c), Equation (5) is violated for both intersected edges. Then, no new
node is created and the transition element is not divided. In both cases, the interface position
is slightly altered regarding the temporary mesh. However, the introduced error is not
significant since the F-field itself is not modified at this step of the computation.

In order to clarify the connection between the various steps of the computation, an
illustration of the complete solution procedure is given in Figure 3. The initial position of the
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Figure 2. Classification and cutting out of transition elements.

interface in the reference mesh is shown in Figure 3(a). From this information, the initial
F-field is reconstructed by assigning a value of F to every node of the reference mesh (Figure
3(b)) according to Equations (2), (3) and (4). Then, by implementing the local mesh adaptation
technique, transition elements are divided and a temporary mesh is generated as shown in
Figure 3(c). After the flow equations have been solved by finite element method on the
temporary mesh, the computed nodal velocities (Figure 3(d)) are projected onto the reference
mesh as seen in Figure 3(e). In the next step, using the obtained velocity values, the new F-field
is determined by solving F advection equation on the reference mesh. This F-field is then
employed to identify the new interface position by plotting the contour line Fc as depicted in
Figure 3(f). This will complete the sequences used in the first time step and to carry on the
computation, the steps of Figure 3(c–f) will be repeated for each time step.

3. GOVERNING EQUATIONS FOR THE TWO-FLUID SYSTEM

3.1. Flow equations

The flow considered here is that of a system composed of two viscous incompressible and
non-miscible fluids as illustrated in Figure 4. The domain of interest is V, with V1 and V2 the
sub-domains associated with fluid 1 and 2 respectively. G is the boundary of V with G1 and G2,
the parts of G induced by V1 and V2. Finally, G12 represents the interface separating fluid 1
from fluid 2 in V.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 719–736 (1998)
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Figure 3. Illustration of the local mesh adaptation algorithm. (a) Interface initial position on the reference mesh. (b)
Description of the F-field on the reference mesh. (c) Loal mesh adaptation—physical properties and boundary
conditions update. (d) Computation of the velocity field on the temporary mesh. (e) Projection of the computed
velocity field on the reference mesh. (f) Computation of the new F-field—update of the interface locaton on the

reference mesh.

The equations governing the motion of this two-fluid system are the momentum and
continuity equations with discontinuous physical property fields. If ra and ma denote the
density and the dynamic viscosity of fluid a(a=1, 2), V is the velocity and b the body forces,

Figure 4. Two-fluid system with a moving interface.
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these equations are written as:

ra

�(V
(t

+ (V ·9)V
�

=9 ·s+b (6)

9 ·V=0 (7)

In the momentum equation (6), s is the stress tensor, the expression of which, for both fluids,
is given by the following Newtonian behaviour law:

s= −pI+ma(9V+9VT) (8)

where p is the pressure and I the identity tensor.

3.2. Boundary conditions

Different types of boundary conditions may be used on G. For more generalities, we will
express them in the curvilinear co-ordinate system (t, n) where t and n are the unit tangent and
the unit outward normal vectors respectively.

(i) The Dirichlet boundary conditions may be used for every one of the tangential and
normal velocity components:

Vt=V t
G (9)

Vn=Vn
G (10)

Equation (9) may be employed to specify a no-slip condition at solid walls, with a zero value
for V t

G if the walls are fixed. It may also be used as inlet or outlet boundary conditions.
Equation (10) may be applied to impose a normal velocity profile at inlet or an impermeabil-

ity condition at solid walls. In the last case, Vn
G is set to zero.

(ii) The Neumann boundary conditions may be applied as specified normal and/or tangen-
tial forces:

Tt=T ·t= (s ·n) · t=T t
G (11)

Tn=T ·n= (s ·n) · n=Tn
G (12)

where Tt and Tn are the tangential and normal components of the stress vector T, respectively.
Equation (11) is exclusively used to impose a wall shear stress condition or a slip condition

if T t
G is set to zero. This is also the correct condition to specify symmetry lines. In our

numerical model, in order to allow the movement of the interface along solid walls, equation
(11) was employed, instead of using a no-slip condition. In that case, either T t

G=0 or
T t

G= −CfVt is imposed, where Cf is a specified friction coefficient.
Equation (12) is generally applied with a zero value of Tn

G in order to impose a traction-free
boundary condition at outlet. It is also a useful condition to specify a pressure gradient.

3.3. Interfacial conditions

At the interface G12, both kinematical and mechanical conditions must be satisfied. The first
one, which is velocity continuity condition, is automatically satisfied since the discretized
sub-domains V1 and V2 share the same nodes at this interface. In the absence of surface
tension gradient along the interface, the mechanical condition indicates that the jump in
traction forces balance in the surface tension action due to curvature:

T1+T2+
g

R
n=0 (13)
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where T1 and T2 are the stress vectors of fluid 1 and fluid 2 at the interface, the surface tension
coefficient and R the radius of curvature of the interface. n is the unit normal vector to G12

pointing towards the center of curvature.

4. FINITE ELEMENT MODEL

4.1. Front tracking problem

The finite element formulation for the front tracking problem has been presented in previous
studies [19–21]. The integral form of the variational statement is written as:

WF=
&

V
dF

�(F
(t

+V ·9F
�

dV (14)

where dF represents the weighting function for F.
This integral is spatially discretized using an iso-parametric Lagrangian three-node triangu-

lar element, which ensures a piece-wise linear C0 approximation for the pseudo-concentration
function F.

4.2. Flow problem

For the flow problem, some modifications have been made to the numerical model presented
in a previous paper [20], in order to take into account the interface condition (13).

In References [19–21], a finite element that ensured a C0 approximation for the pressure was
used. However, this element is not suitable to handle pressure jump across the interface. So in
the present numerical model, a seven-node triangular finite element that ensures a quadratic C0

approximation for the velocity and a piece-wise linear C1 approximation for the pressure was
used. Thus, pressure jump and traction forces jump can be modelled. This choice of a
discontinuous pressure approximation is made in combination with a penalized formulation of
the incompressibility condition. Therefore, the pressure variable can be eliminated at element
level by static condensation in order to reduce the number of variables to compute.

The integral form of the variational statement is then written as:

WV=
&

V

!
dV

�
ra

�(V
(t

+ (V ·9)V
�

−b
n

+dp
�
9 ·V−

p
l

n
+9dV:s

"
dV−

&
G

dV ·T dG

−
&

G12

dV · (T1+T2) dG12, (15)

where dV and dp are the weighting functions associated with the velocity and the pressure,
respectively. l is the penalty coefficient of the order of 109. In Equation (15), the boundary
integrals result from the integration by parts of the stress terms. For convenience, they may be
expressed in terms of tangential and normal components in order to incorporate Neumann
boundary conditions (11) and (12) and interface condition (13). The integral form (15) then
becomes:

WV=
&

V

!
dV

�
ra

�(V
(t

+ (V ·9)V
�

−b
n

+dp
�
9 ·V−

p
l

n
+9dV:s

"
dV

−
&

G
(dVtTt+dVnTn) dG+

&
G12

dVn

g

R
dG12. (16)
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Figure 5. Computation of surface tension force.

The first boundary integral is equal to zero on the parts of G where Dirichlet boundary
conditions (9) and (10) prevail. It is spatially discretized by employing three-node quadratic
boundary finite elements when Neumann boundary conditions must be specified.

4.3. Surface tension force modelling

In Equation (16), the surface tension action on G12 is modelled by using quadratic
three-node boundary elements. The calculation of the unit normal vector n and the radius of
curvature R at the interface may then be obtained from the element curvature. However, in the
present study, in order to simplify the mesh adaptation algorithm, the interface is approxi-
mated by a set of line segments. Each one of these line segments corresponds to a three-node
boundary element. Thus, the parameters n and R must be determined differently. They are
calculated only for each one of the boundary element vertex nodes. Let i be one of these nodes
and i−2 and i+2 the two others neighbouring vertex nodes as illustrated in Figure 5. The
parameters n and R, and then the surface tension force are computed at node i, by considering
the circle going through nodes i−2, i and i+2. Then, the surface tension force at mid-node
i+1, for example, is obtained from linear interpolation of nearby vertex nodes contributions.

4.4. Solution procedure

The solution strategy of the governing equations of this moving interface flow has been
presented in References [19,20]. The implicit Euler scheme is used to advance the solution in
time. The solution is staggered in the sense that the flow problem and the front tracking one
are solved in a sequential manner. Indeed, at each time step, the last calculated velocity field
is employed to compute the interface location. This in turn is used, to update fluid properties
before solving flow equations, and so on. This way of coupling is of explicit nature which
therefore induces a time step limitation. A reliable guide to select the most suitable time step
is that the interface does not skip any domain element.

5. NUMERICAL EXAMPLES

In order to demonstrate the efficiency of the proposed model, we present two numerical
examples.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 719–736 (1998)
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The first one is the broken dam problem studied experimentally by Martin and Moyce [25]
and numerically by other authors (Hirt and Nichols [7], Huerta and Liu [26] and Wang and
Wang [13]). This problem has retained our attention because it belongs to the domain of
application of both models (average properties for transition elements or accurate discretiza-
tion of the material discontinuity), in the limit of comparable meshes. Thus the numerical
results obtained with our model (including mesh adaptation), and its previous version [20]
(using average properties for transition elements), have been compared with the data of Martin
and Moyce [25].

The second example is the well-known Rayleigh–Taylor instability that occurs when a heavy
fluid is superimposed over a light one in a gravitational field acting downward. The aim of that
study is to check if our numerical model (supplemented with local mesh adaptation) can now
accurately handle such class of flows (dominated by interfacial phenomena). This problem has
been analyzed theoretically by Chandrasekhar [27] in the early stages of the instability
development. Authors such as Daly [28,29], Dervieux and Thomasset [30], Baker et al. [31],
Tryggvason and Unverdi [32,33] and Andrews [34] have studied it numerically. The results
obtained in the present study have been compared with the analytical predictions of Chan-
drasekhar [27] for different fluid density ratios. Surface tension effect on the instability growth
for a given ratio has also been examined.

5.1. Broken dam problem

A column of water, in hydrostatic equilibrium, is initially confined between two vertical
walls. At initial time (t=0), the right wall is suddenly removed and the water column flows
out, under gravity, along a dry horizontal floor. The water column is chosen to be a=5.715
cm wide and b=11.430 cm high in order to compare this numerical solution with the
experimental data obtained by Martin and Moyce [25]. The computational domain as shown
in Figure 6 is extended by approximately six times the width of the column in the horizontal
direction and twice the height vertically.

The density and the dynamic viscosity are 1000 kg m−3 and 0.001 kg m−1 s−1 respectively
for the water, and 1 kg m−3 and 0.0001 kg m−1 s−1 for the surrounding air. No surface
tension force is applied since its effect is negligible compared with gravity force.

The initial values for velocity field are zero in the whole domain and the initial F-field is
defined as follows:

F(x, y)=y−b for y\2x and F(x, y)=x−a for y52x.

Figure 6. Computational domain and boundary conditions for broken dam problem.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 719–736 (1998)
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Figure 7. Water front location z/a versus time t
2g/a along the floor.

The specified value Fc used to identify the interface position at each time step is then equal to
zero.

The boundary conditions used in the calculation are indicated in Figure 6. They correspond
to those of a flow in a closed cavity, although Martin and Moyce [25] used an open channel.
However, the influence of these boundary conditions can be clearly identified in the results,
thus defining a non-influenced region where numerical and available experimental results can
be compared.

For the computation, the unstructured reference mesh of the rectangular domain comprises
1488 elements. The problem has been run for three values of gravity (g=0.01, 1 and 9.81 m
s−2). During the collapse of the column, the water accelerates and smaller time steps have to
be used. They vary from 0.5 s to 0.001 s.

The predicted water front location along the floor have been reported for the three gravity
values in Figure 7 and compared with the Martin and Moyce’s experimental data [25]. The
results are presented in a dimensionless form by defining a as the reference length and 
a/2g
as the reference time. The numerical solutions obtained by the model, including mesh
adaptation are in good agreement with the measurements, until t
2g/a:2, which defines the
limit of the non-influenced region. One can observe that the front speed is slightly over-esti-
mated by the numerical model. This is an outcome of the slip boundary condition used on the
horizontal floor. However, the influence of this condition decreases with increasing gravity
magnitude.

The main features of this flow depends on gravity and viscosity, whereas the details that
happen at the interface are of second order. Thus, as depicted in Figure 7 for the case g=0.01
m s−2, the local mesh adaptation model improves only slightly global behaviour, such as the
prediction of the water front location on the floor. However for the same mesh, no successful
calculation has been obtained by the model without mesh adaptation, for gravity values
greater than 0.01 m s−2. This failure may be related to numerical instabilities produced when
using average properties for transition elements, as previously mentioned in Section 2.
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Therefore, in the presence of high property ratio, local mesh adaptation can be seen as a more
accurate way than artificial dumping to overcome such numerical instabilities.

Two other computations were performed, without mesh adaptation, for g=0.01 m s−2.
Instead of using average fluid physical properties in transition elements, the physical properties
of the air for the first calculation and those of the water for the second were used. Figure 8
shows the variation of the velocity y-component along the x-direction for a given interface.
Because of the unstructured mesh used, the curves were plotted at a height where the node
number is greatest. Then, it can be seen that the results given by the mesh adaptation model
are situated between the two limit curves obtained without this adaptation technique. So if a
very fine mesh is used, the model not including mesh adaptation will give results close to those
of the improved model.

5.2. Rayleigh–Taylor instability

When a heavy fluid (density r2) is superimposed over a light one (density r1) in a
gravitational field g acting downward, the fluid interface is unstable. Any perturbation of this
interface tends to grow with time producing the phenomenon known as Rayleigh–Taylor
instability.

Various factors such as fluid density ratio, viscosity, surface tension, etc., influence the
development of this instability. We have chosen here to study, firstly in the absence of surface
tension, the effect of the density ratio r2/r1 on the growth of the instability and to compare
the results, in the early stages of the instability development, with the analytical predictions
given by Chandrasekhar [27]. Then, an additional calculation including surface tension was
performed in order to examine its effect on this instability. Chandrasekhar [27] predicted, by
means of the linear theory, that there exists a most unstable wavelength disturbance lm for
which the growth rate nm of Rayleigh–Taylor instability is greatest. Both values are given by:

Figure 8. Velocity y-component variation along the x-direction.
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Figure 9. Computational domain and interface initial shape for Rayleigh–Taylor instability.
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where m is the dynamic viscosity, supposedly the same for both fluids (m=0.001 kg m−1 s−1

in the present study). The density of the light fluid r1 is fixed at 1 kg m−3 and remains
unchanged, while that of the heavy fluid r2 varies.

The height of the computational domain, as shown in Figure 9, has been fixed at h=18 cm,
whereas the width is adjusted in order to simulate a half wavelength of the most unstable
perturbation (lm/2). The two horizontal boundaries of the domain are considered as slip walls
and the vertical ones correspond to symmetry lines. In both cases, the boundary conditions
are:

Vn=0 and Tt=0.

At initial time (t=0), a zero velocity field is imposed in the whole computational domain
and the interface perturbation is introduced by specifying the following initial F-field:

F(x, y)=y−
�h

2
+A0 cos(k0x)

�
,

where the amplitude and the wave number of the perturbation are A0=lm/100 and k0=2p/
lm, respectively. With this definition of the F-field, the index value Fc is equal to zero and the
interface has the initial shape shown in Figure 9.

The calculations are performed on an unstructured mesh of 1200 elements. The gravity value
is 9.81 m s−2 and the time steps vary from 0.02 s to 0.005 s depending on the density ratios.

Figure 10 shows the time variation of the calculated spike’s amplitude (large dots) for four
problems in which the fluid density ratios are 1.1, 2, 3 and 4. These results are compared with
linear theory, which is only applicable during the early phases of the instability development
and indicates that the perturbation amplitude grows with time as:

A=A0 cosh(nmt).

We notice that the numerical solutions are in good agreement with the linear theory at early
stages of the computations. Then non-linear effects become dominant and the results diverge
from this theory.
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Figure 10. Comparison of the calculated spike amplitude with the linear theory.

The growth rate of the perturbation in the early stages is plotted versus Atwood number
A= (r2−r1)/(r2+r1) in Figure 11 and is compared with the prediction of Chandrasekhar
[27]. Excellent agreement with this prediction is obtained. As found by Daly [28], the growth
rate increases with the Atwood number.

In order to examine the effect of surface tension on the instability growth, an additional
computation incorporating surface tension has been performed for a fluid density ratio of 1.1.

Figure 11. Comparison of the numerical growth rate with the linear theory.
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Figure 12. Development of Rayleigh–Taylor instability at different density ratios and surface tension coefficients.
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The surface tension coefficient is chosen to be smaller than a critical value for which the flow
is stabilized. According to Chandrasekhar [27], for an initial perturbation whose wavelength is
lm, this surface tension critical value is given by:

gc=
lm

2 (r2−r1)g
4p2 .

For a density ratio of 1.1, that critical value is equal to 1.53 10−4 N m−1.
Figure 12 shows the development with time of Rayleigh–Taylor instability for the following

four cases:

a−r2/r1=1.05 and g=0

b−r2/r1=1.1 and g=0

c−r2/r1=3 and g=0

d−r2/r1=1.1 and g=8 ·10−5 N m−1.

The first three columns show that the late time shape of the interface and the instability growth
are strongly influenced by the density ratio. At density ratios of 1.05 and 1.1, the interface rolls
up along the side of the spike giving this mushroom form. This phenomenon, known as
Kelvin–Helmholtz instability, is due to the development of short wavelength perturbations
along the fluid interface and parallel to the main flow. At a density ratio of three, however,
there is no roll-up. The heavy fluid simply falls through the light fluid in the form of a narrow
spike, the amplitude of which rapidly increases with time.

Finally, the last column plot series compared with the second column ones reveal the surface
tension retarding effect on the short wavelength mode development. Indeed, Kelvin–Helmoltz
instability appears later in the calculations that include surface tension, rather than in the zero
surface tension problem.

6. CONCLUSIONS

A finite element model for the simulation of time-dependent incompressible viscous flows with
moving interface has been presented. The 2D Navier–Stokes equations are solved with a fixed
mesh approach, and the interface is tracked by a pseudo-concentration function based method.
This latter allows us to deal with problems with complex interface topology. In order to keep
the physical fluid property fields sharp, a local mesh adaptation technique has been developed
for general unstructured triangular meshes. Owing to this technique, the description of
material discontinuity across the interface is accurate. Interface phenomena such as the surface
tension effect can also be incorporated in a natural way by using specific boundary elements
at the interface. The local mesh adaptation then allows us to treat the interface as a real
discontinuity which has better accuracy in comparison with the techniques that smear it over
some finite region. Finally, this technique is more economical with computational time than
the remeshing-based methods which entirely redefine the mesh. Here, only crossed interface
elements are affected by the modification. The numerical examples presented in this paper have
demonstrated the efficiency of our finite element model.
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